The European Data Grid Project

Ben Segal CERN Information Technology Division B.Segal@cern.ch

Brian L. Tierney LBNL

CERN - The European Organisation for Nuclear Research

The European Laboratory for Particle Physics

- Fundamental research in particle physics
- ✓ Designs, builds & operates large accelerators
- Financed by 20 European countries
- ✓ SFR 950M budget operation + new accelerators
- ≥ 3,000 staff
- ≥ 6,000 users (researchers) from all over the world
- Experiments conducted by a small number of large collaborations: LEP experiment (finished): 500 physicists, 50 universities, 20 countries, apparatus cost SFR 100M

LHC experiment (future ~2005) : 2000 physicists, 150 universities, apparatus costing SFR 500M

CERN IT/PDP

The LEP accelerator

- ≥27 km circumference, 100 m underground

Many questions still remain ? LHC

CERN IT/PDP

LHC in the LEP Tunnel

- ∠ Centre of mass collision energy of 14 TeV.
- ≥ 1000 superconducting bending magnets, each 13 metres long, field 8.4 Tesla.
- ∠ Super-fluid Helium cooled to 1.90 K

World's largest superconducting structure

CERN IT/PDP

LEP to LHC

Parameter	LEP	COMPASS	LHC
Raw data rate	1MB/sec	35MB/sec	100MB/sec
Number of events/year	<10 ⁷	~1010	~10 ⁹
Raw data volume/year	0.2-0.3 TB	300TB	1 PB
Event size	20 – 50 kB	30kB	1 MB
Event reconstruction time	2-8 Si95-secs	2 Si95-secs	500 Si95-secs
Number of users	400 - 600	~200	~2000
Number of institutes	30-50	~35	~150

Each LHC experiment requires one to two orders of magnitude greater than the TOTAL capacity installed at CERN today

All LEP: <1TB/year Rate: 4MB/sec All LHC: ~3PB/year Alice rate: 1GB/sec

CERN IT/PDP

13

Characteristics of HEP computing

Event independence

- Data from each collision is processed independently
- Mass of independent problems with no information exchange

Massive data storage

- Modest event size: 1-10 MB
- Total is very large Petabytes for each experiment.

Mostly read only

- Data never changed after recording to tertiary storage
- But is read often! cf.. magnetic tape as an archive medium

Modest floating point needs

- HEP computations involve decision making rather than calculation
- Computational requirements in SPECint95 secs

CERN IT/PDP

Can Grid technology be applied to LHC computing?

CERN IT/PDP

The GRID metaphor

- Analogous with the electrical power grid
- Unlimited ubiquitous distributed computing
- Transparent access to multi peta byte distributed data bases
- Easy to plug in
- Hidden complexity of the infrastructure

lan Foster and Carl Kesselman, editors, "The Grid: Blueprint for a New Computing Infrastructure," Morgan Kaufmann, 1999, http://www.mkp.com/grids

CERN IT/PDP

What does the Grid do for you?

- You submit your work
- And the Grid
 - Finds convenient places for it to be run
 - Organises efficient access to your data
 - Caching, migration, replication
 - Deals with authentication to the different sites that you will be using
 - ✓ Interfaces to local site resource allocation mechanisms, policies
 - Runs your jobs
 - Monitors progress
 - Recovers from problems
 - Tells you when your work is complete
- If there is scope for parallelism, it can also decompose your work into convenient execution units based on the available resources, data distribution

CERN IT/PDP

21

European Data Grid partners

Managing partners

UK: PPARC I taly: I NFN France: CNRS Netherlands: NI KHEF ESA/ESRI N CERN

Industry

IBM (UK), Compagnie des Signaux (F), Datamat (I)

Associate partners

Istituto Trentino di Cultura (I), Helsinki Institute of Physics / CSC Ltd (FI), Swedish Science Research Council (S), Zuse Institut Berlin (DE), University of Heidelberg (DE), CEA/DAPNIA (F), IFAE Barcelona, CNR (I), CESNET (CZ), KNMI (NL), SARA (NL), SZTAKI (HU)

Other sciences

KNMI (NL), Biology, Medicine

Formal collaboration with USA being established

CERN IT/PDP

Preliminary programme of work

Middleware

WP 1 Grid Workload Management
WP 2 Grid Data Management
WP 3 Grid Monitoring services
WP 4 Febric Management

WP 4 Fabric Management

WP 5 Mass Storage Management

Grid Fabric -- testbed

WP 6 Integration Testbed WP 7 Network Services

Scientific applications

WP 8 HEP Applications WP 9 EO Science Applications WP 10 Biology Applications

Management

WP 11 Dissemination
WP 12 Project Management

INFN

B. Segal/CERN

R. Middleton/PPARC

O. Barring/CERN

J. Gordon/PPARC

F. Etienne/CNRS

C. Michau/CNRS

F. Carminati/CERN

L. Fusco/ESA

C. Michau/CNRS

G. Mascari/CNR

F. Gagliardi/CERN

CERN IT/PDP

23

EU Data Grid Main Issues

- Project is by EU standards very large in funding and participants
- Management and coordination is a major challenge
- Coordination between national (European) and EU Data Grid programmes
- Coordination with US Grid activity (GriPhyN, PPDG, Globus)
- Coordination of the HEP and other sciences objectives
- Very high expectations already raised, could bring disappointments

CERN IT/PDP

Terminology

- StorageElement:
 - any storage system with a Grid Interface
- Logical File Name (LFN)
 - globally unique
 - LFN://hostname/string
 - ∠ hostname = virtual organization id
 - wse of hostname guarantees uniqueness
 - e.g.: LFN://cms.org/analysis/run10/event24.dat
- Physical File Name (PFN)
 - PFN://hostname/path

CERN IT/PDP

WP2 work: Replica Catalog

- Replica Catalog contains a table mapping LFN to 1 or more PFNs.
- There should be exactly one ReplicaCatalogue for each StorageElement
- All Replica Catalogues for a given virtual organization are linked together, probably in a tree structure
 - ∠ "leaf" catalogues contain a mapping of LFN to PFN
 - "non-leaf" catalogues contain only a pointer to another replica catalogue
- All ReplicaCatalogues (leaf and non-leaf) have identical client APIs

CERN IT/PDP 32

WP2 Work: Replica Management

- Reliable File Copy
- Cost Estimation
- StorageElement Control
 - allocation
 - pinning

CERN IT/PDP

